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Introduction to Stata- A. Chevalier  
 

Lecture 2: Advanced data manipulation 
 

Content of Lecture 2: 
 
-creating data 
-using dates 
-merging and appending datasets 
- wide and long 
-collapse 
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A] Creating data 
 
As mentioned in Lecture 1, the most useful commands to create variables are the 
following: 
generate, replace, egen, rename, drop, keep, sort, encode, reshape 
 
You should already have had a look at the help file for them, and I will only stress 
some specific features here. 
 
* generate 
 
 
You want to generate the ratio of weight per length, and a dummy when this ratio is 
greater than 16:  
 
. generate lbperin =weight/length
. generate dense=0
. replace dense =1 if lbperin>16
(38 real changes made)

Alternatively, I could have typed instead of the generate and replace 
. gen dense2=lbperin>16

This feature of generate to create dummy variables is quite useful, the logic of it can 
be summarised as, if the condition is true, new variable equals 1, otherwise, new 
variable equals 0.   
 
Attention: be careful when missing observations are present in your dataset.  
Missing variables are interpreted as a very large positive number, hence depending on 
your inequality, the condition will always be true (or untrue) for missing observations.  
It is always wise to use a recode command, to make sure that no missing observations 
has been coded in your dummy variable. 
recode dense2 *=. If lbperin==.
 
We can check that dense and dense2 are the same. 
. compare dense dense2

---------- difference ----------
count minimum average maximum

---------------------------------------------------------------------
dense=dense2 74
jointly defined 74 0 0 0
total 74

 
The best solution is to do all this in one step only: 
 
gen dense3 = lbperin>16 if lbperin~=.
 
If you want to generate string variables or create a variable not in float format, you 
have to specify the format. 
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drop dense
generate byte dense = lbperin>16

generate str18 newmake=make
 
 
* Dealing with String variables 
 
There are quite a few commands that deal specifically with string variables. 
 
First we are looking at ways of extracting part of a string variable: substr. 
Let's say, we want to separate the manufacturer and the model from newmake.  The 
manufacturer is the first part of the string and the model is the second one, after the 
space. 
Substr allows us to do just that, in fact as this is quite complicated, as the various 
strings that we want to extract are of different length. Let’s start with a simpler 
example, to check how substr works. 
 
Say that we have a string variable (sentence) that contains the following sentence 
“hello there” and that we want to split the two components. 
 
gen hello=substr (sentence, 1,5)
 
substr needs to be provided with a set of 3 information:  

- which string you want to split 
- what is the position of the first character of the splitted string 
- how many characters does the splitted string include. 

 
Here, we created a new string hello, which is part of sentence, it starts at the first 
character and is 5 characters long.  Be careful, blank characters at the beginning of the 
string counts as characters.  It is possible to eliminate them (using trim). 
 
To go back to our example, the difficulty comes from the fact that we do not know the 
length of the first string, it varies with the name of the constructor…. 
 
List newmake in 1/5

newmake
1. AMC Concord
2. AMC Pacer
3. AMC Spirit
4. Buick Century
5. Buick Electra

 
To isolate the make, we are going to rely on another stata command (as you can see, 
they can sometimes be combined): index 
 
From the help file, we know that: 
index(s1,s2) returns the position in s1 in which s2 is first found or 0 if s1 does not 
contain s2. 
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Comment: Have a look at the string functions to find out the best way to manipulate 
strings. 
 
So basically, what we want to do it to find the position of the blank that separates the 
make from the model in newmake, and then cut the make string at the previous 
character, this is done by: 
 
gen str18 manuf=substr(newmake, 1,index(newmake," ")-1)
(1 missing value generated)
 
You have to let stata know that manuf is going to be a string variable, length maxi 18 
characters…. 
Comments: Do not despair of manipulating strings, just break the problem into its 
basic components. 
 
However, something went wrong somewhere, since one missing value was generated. 
To find out the culprit: 
 
. list make if manuf==""

make
66. Subaru     

 
Our syntax was based on finding the blank character between the make and model, 
obviously in the case of Subaru, where the model is absent, it did not work. 
However, it is easy to correct this; 
 
. replace manuf = make in 66
(1 real change made)
 
We have now created the manuf variable, but this is a string and it cannot be used 
easily in most of the analysis, we want to make.  What about creating a new variable 
which will contain the same information as manuf but in a real format? 
 
There are three ways of doing this; we are going to review them now, from the most 
tedious to the least.  However, the most tedious one, has the interesting feature of 
exploiting some new and particularly useful commands (by and _n)…. 
 
Basically, we want to group the data by manuf, and create a unique identifier for each 
manuf: 
 
Method 1: 
 
. sort manuf

. by manuf: gen manuf1=1 if _n==1
(51 missing values generated) 
 
by is a useful command, it allows you to repeat the command for each group of 
observations for which the values of the variables in varlist are the same.   
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_n and _N are also very useful for data manipulation, especially when combined with 
by.  
 
_N is the total number of observations (when used with by, it is therefore the total 
number of observations within a group of observations for which the value of the 
varlist is the same).  _N is the total number within each by group. 
 
_n is a unique internal identifier, starting at 1 and going up to _N, when combined 
with by, the identifier is unique within the group. 
_n is a running counter within each by group. 
 
We should have another example on the use of _n and _N later.  
 
Hence, our last command, created a flag variable taking the value 1 for the first 
observation of the group, as defined by manuf. 
 
. list manuf manuf1 in 1/8

manuf manuf1
1. AMC 1
2. AMC .
3. AMC .
4. Audi 1
5. Audi .
6. BMW 1
7. Buick 1
8. Buick .

 
We now have a flag for the first observation of each group, to get to what we want, it 
is now time to have a look at the sum function; 
 
sum(x)      returns the running sum of x, treating missing values as zero.  
 
. replace manuf1=sum(manuf1)
(73 real changes made)

. list manuf manuf1 in 1/8

manuf manuf1
1. AMC 1
2. AMC 1
3. AMC 1
4. Audi 2
5. Audi 2
6. BMW 3
7. Buick 4
8. Buick 4

 
Method 2: 
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egen is a generic command, that allows you to generate variables according to some 
specific functions.  Have a look at the help file for egen.  Egen tends to make life 
easier in a multitude of problems. 
 
In our case of creating a group identifier, we could have simply typed: 
 
. egen manuf2=group(manuf)

. list manuf manuf2 in 1/8

manuf manuf2
1. AMC 1
2. AMC 1
3. AMC 1
4. Audi 2
5. Audi 2
6. BMW 3
7. Buick 4
8. Buick 4

 
This gives us the same results as our previous laborious work, this is not a surprise 
since egen with the group function does exactly what the three lines of instruction that 
we previously typed.  This has also the advantaged of skipping a group for which 
manuf would be missing. 
These two approaches are OK, but they both suffer from a drawback that the label 
corresponding to the created groups have not been reported.  It will be possible, to 
insert them ourselves (as seen in Lecture 1).  However, there is a more efficient way 
of doing it. 
 
* Method 3:  
 
This is the simplest approach, as this command is a program that just does what we 
have previously been typing, and make sure that the labels are created.  Encode reads 
string variables and with the generate option, create a numeric equivalent to the 
original string variable. 
 
. encode manuf, gen(manuf3)

. tab manuf3

manuf3 | Freq. Percent Cum.
------------+-----------------------------------

AMC | 3 4.05 4.05
Audi | 2 2.70 6.76
BMW | 1 1.35 8.11

Buick | 7 9.46 17.57
Cad. | 3 4.05 21.62

Chev. | 6 8.11 29.73
Datsun | 4 5.41 35.14
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Dodge | 4 5.41 40.54
Fiat | 1 1.35 41.89
Ford | 2 2.70 44.59

Honda | 2 2.70 47.30
Linc. | 3 4.05 51.35
Mazda | 1 1.35 52.70
Merc. | 6 8.11 60.81
Olds | 7 9.46 70.27

Peugeot | 1 1.35 71.62
Plym. | 5 6.76 78.38
Pont. | 6 8.11 86.49

Renault | 1 1.35 87.84
Subaru | 1 1.35 89.19
Toyota | 3 4.05 93.24

VW | 4 5.41 98.65
Volvo | 1 1.35 100.00

------------+-----------------------------------
Total | 74 100.00 

 
There is also a decode command that does exactly the opposite operation (from a 
labelled real variable to a string).   
 
* remark on memory 
Say that we are happy now with our auto datasets, however, before saving it, we could 
delete some of the variables we created today that are not of much use now. 
 
. drop dense2 newmake manuf manuf1 manuf2
 
that leaves us with an extra three variables compared to when we started. These 
variables have been created in formats that are memory hungry.  A useful command 
to prevent the size of your dataset to get our of control (and slow stata a great deal) is: 
. compress
mpg was int now byte
rep78 was int now byte
trunk was int now byte
turn was int now byte
manuf3 was long now byte
make was str18 now str17
 
Compress changes the format of your variables to the most effective format.   
You can now save your dataset. 
 
When opening large datasets, you will end up with a message like: 
 
. use "D:\Data\ECPH2\data\w2pers.dta", clear
no room to add more observations
r(901);
 
Do not despair, it is that stata default memory set up is not adequate for your data.  
This can be changed by: 
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set mem xxxm 
 
where xxx is the amount of memory you are allocating to stata.  This is not limited by 
stata but the amount of RAM and your OS on your computer.  Do not allocate more 
memory than 90% of your RAM to stata, this will slooow things down enormously, as 
the hard drive will be used to provide some memory.  As a rule, set your memory to 
130% of your dataset, unless you are planning to create a large number of variables.   
This should be OK.  Also remember to delete unneeded variables and to compress 
your file. 
 
* Back to the use of _n and _N 
As said previously, _n is a running counter within the by group and _N is the total 
number of observations in your by group. 
 
Let say that we have a dataset containing family id and sibling’s age and that we want 
to create a variable on sibling order for each family. 
 
The dataset looks like: (clear your data, and paste this data in your editor) 
 
famid age 

23 4
23 7
23 11
27 8
27 15
48 2
48 3
48 5
48 7

 
So we want to generate the number of sibling within a family and then the birth order 
as a function of age. 
 
. sort famid

. by famid: gen sibs= _N

. sort famid age

. by famid: gen b_order=sibs -_n + 1
 
Here is what the outcome looks like: 
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  by famid:   
famid age _n _N sibs B_order 
23 4 1 3 3 3 
23 7 2 3 3 2 
23 11 3 3 3 1 
27 8 1 2 2 2 
27 15 2 2 2 1 
48 2 1 4 4 4 
48 3 2 4 4 3 
48 5 3 4 4 2 
48 7 4 4 4 1 
 
Finally, _n can be used to create lag values: 
 
Gen y=y[_n-1] 
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B] using dates 
 
Dates can be written in a variety of format in real life: 18 September 2001, Sept 18, 
2001, 18/09/01 and plenty of others. 
Stata stores dates in a single format so there exist some function to transform dates 
into stata dates. (help date).  In order to be able to compute calculation on dates, stata 
stores them as a real variable.  The first of January 1960 is set as 1, which means that 
dates can be negative. The advantage of this format, is that it makes it easy to 
calculate elapsed time between two dates, but is confusing to anyone but a computer. 
It is nevertheless possible to change the display format of dates so that you can get a 
grip on what is happening. 
 
Copy the following variable in your editor: 
 
date 
12869 
12876 
-2757 
13044 
14610 
 
you would like to know which dates these numbers correspond to; 
 
format date %d

. list

date
1. 27mar1995
2. 03apr1995
3. 14jun1952
4. 18sep1995
5. 01jan2000

. format date %dM_d,_CY

. list

date
1. March 27, 1995
2. April 3, 1995
3. June 14, 1952
4. September 18, 1995
5. January 1, 2000

 
Most of the time, date variables will come in a standard format in your dataset.  The 
following dataset contains an identifier and a date of birth, open it using the infile 
command. 
 
Begin  hosp1.raw 
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05721 01/21/1952 
10322 07/11/1948 
51331 11/15/1968 
end hosp1.raw 
 
First, copy the data in an editor (notepad) and save as a raw file in your current stata 
directory (see lecture 1). 
 
 
. clear
. infile patid str20 bdate using hosp1
(3 observations read)
 
. list

patid bdate
1. 5721 01/21/1952
2. 10322 07/11/1948
3. 51331 11/15/1968

. des

Contains data
obs: 3

vars: 2
size: 84 (100.0% of memory free)

---------------------------------------------------------
----------------------

storage display value
variable name type format label variable
label
---------------------------------------------------------
----------------------
patid float %9.0g
bdate str20 %20s
---------------------------------------------------------
----------------------
Sorted by:

Note: dataset has changed since last saved
 
Although bdate looks Ok, it is a string variable and you cannot do any calculation 
using it. It needs to be transformed into a stata dates using the date function. 
 
. gen bdate2 =date(bdate,"md19y")

. list

patid bdate bdate2
1. 5721 01/21/1952 -2902
2. 10322 07/11/1948 -4191
3. 51331 11/15/1968 3241
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Bdate2 is now in stata date format which is incomprehensible, so we can transform 
the display format.  
 

. format bdate2 %d

. list

patid bdate bdate2
1. 5721 01/21/1952 21jan1952
2. 10322 07/11/1948 11jul1948
3. 51331 11/15/1968 15nov1968 
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C] Merging and appending datasets 
 
These two commands allow you to combine datasets.  Append is the easiest one and 
allows you to add observations (rows) while merge adds variables (columns). Append 
does not require that the “master” and “using” datasets contain the same number of 
variables, even so this is typically the case. 
see help append 
 
For merging datasets, the requirements are a bit more stringent.  The datasets need to 
have an identifier (or a set of variables) that allow you to uniquely define observations 
(in case of a one to one match) or group of observations (group match). 
 
Let’s say that you have two datasets; 

one.dta 
id a b 
 1 10 11 
2 12 13 
3 14 15 
5 16 17 
 

two.dta 
id c 
 1 18 
3 19 
4 20 
 

That you want to merge by id 
 
Let say that the two files have been sorted by id and have been saved on your 
directory.  One is your “master” file, 
 
use one 
merge id using two 
 
Merge.dta 
id a b c _merge 
 1 10 11 18 3 
2 12 13  1 
3 14 15 19 3 
4   20 2 
5 16 17  1 
 
So what exactly happens here?  The data have been merged by id, that is, the new 
variable c has been merged into the “master” dataset for each observation.  A variable 
_merge has also been created which allows you to check the result of the merge for 
each observation. 
3 means everything went OK, the id was observed in both datasets hence for this 
observation you now have 3 observed variables. 
1 means that the id from the master dataset was not available in the second dataset, so 
for these observations no change has been made compared to the master file.  The 
new variable is missing for these observations. 
2 means that the id from the “using” file was not found in the master file. For these 
observations, the “master” variables are missing and the “using” variables remain 
what they originally were. 



 

 14 

Comment: It is of crucial importance to check _merge after merge, as not everything 
always goes to plan. In case of unsolvable problems, check that the identifiers are 
unique. 
  
This can be done easily 
 
use one,clear
sort id
quietly by id: assert _N=1
 
Assert check the statement made and return nothing if statement correct and an error 
message if statement incorrect.  Here the statement is that each group defined by id 
should contain only 1 member (remember what _N and by do for you). 
 
. assert 2+2==5
assertion is false
r(9);
 
I also like using; 
gen duplicate=id[_n]==id[_n-1]
 
which flag observations for which the statement is right (remember how to create a 
dummy) 
 
Now you can copy the two original files in the stata editor, and practice with the 
merge command.  Check the quality of your merge, by looking at the editor, list 
_merge and tab _merge 
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D] Wide versus long 
 
I’m only referring to the way your dataset is organised.  So first I will explain what I 
mean by these expressions: 
 
Wide format 
id sex Inc90 Inc91 
1 1 5000 5500 
2 0 2000 4000 
3 0 3000 3200 
 
Long Format: 
id year sex Inc 
1 90 1 5000 
1 91 1 5500 
2 90 0 2000 
2 91 0 4000 
3 90 0 3000 
3 91 0 3200 
There is no specific advantage of having the data in one format rather than the other 
(even so long usually provides you with more commands), it all depends on what you 
want to do. 
 
Say that you want to calculate the income growth, then it is easier to have the data in 
wide format: 
 
gen growth=(inc91-inc90)/inc90
 
Say you want to study income by sex, then you need to have the data in long format 
 
xtreg inc sex, i(id) be
 
As there is no specific information that is in one dataset and not in the other, it is easy 
to go from one form to the other.  In most cases you will want to reshape when 
dealing with time varying variable, so I will keep my explanation with this set-up.  
However, reshape is not limited to this case. You can use it, with household data, 
when it is sometime easier to have all household members on one observation and 
sometime each one of them on one line. 
 
It is important to differentiate between the different types of variables that we have 
here. 
id is your identification variable, it is needed to make sure that income from different 
years stay associated to the right person. 
Year is needed to find out, when time varying variables occurred. 
Fixed effect variables: Variables that do not change over time, in our example sex 
Time specific variables: Variables changing over time. 
 
To go from wide to long: 
reshape long inc, i(id) j(year)
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The variable year does not exist nor does the variable inc.  Inc is only the common 
root of the time varying variable, and year is the name you want to give to the variable 
measuring time. Note that sex, the fixed effect variable is not specified, but all time 
varying variables must be specified.  If a time varying variable is not specified, then 
the command will return an error message.  If this happen, you can get a report on 
where the error occur by typing reshape error. 
i identifies a logical observation 
j identifies the name of the grouping variable 
 
To go from long to wide: 
reshape wide inc, i(id) j(year)
 
Comment: when reshaping from long to wide, make sure that the root of the time 
varying variable is small enough so that the year identifier can be added without the 
variable name getting larger than 8 characters. 
 
If you copy the wide dataset on your editor, you can practice with the reshape 
function. 
Now, when the data is in long format, change the value of sex from 0 to 1 for the 
second occurrence of observation 3.  Try reshaping the data to wide format.  Use 
reshape error. to find out where the problem is. 
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E] Collapse 
 
collapse converts the data in memory into a dataset of means, sums, medians, etc. 
This is extremely useful when you want to provide summary information at a higher 
level of aggregation that what is available in your data. For example, you have data at 
the individual level and what to aggregate it at the firm level. 
 
Be careful, collapse changes your data drastically.  All individual information 
disappear and only the specified variables remain at the group level. 
For example, in the auto dataset we had 74 cars.  We previously created manuf and 
found that we had data on 23 manufacturers.  If we are interested in the average price 
of cars for each manufacturer: 
 
collapse price, by(manuf)

 
 
We are now left with 23 observations (manufacturers) and one observation: the mean 
range price. 
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